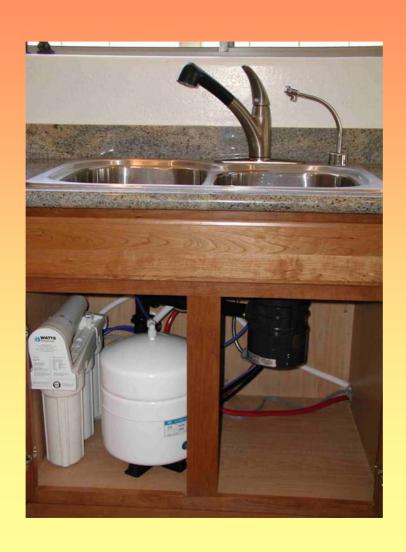
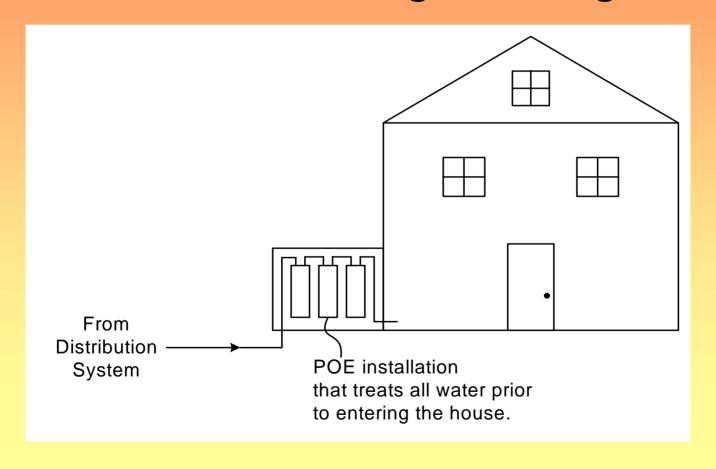


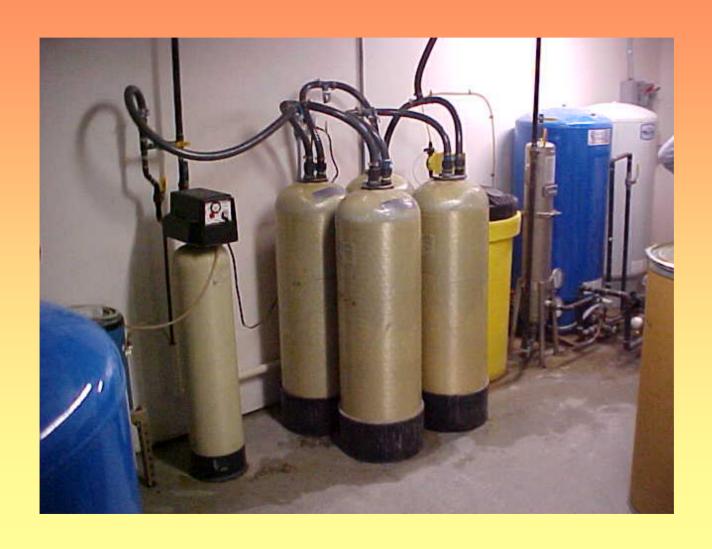
POU/POE for Arsenic Removal

Point-Of-Use (POU)


Treats water at a single tap


Installed POU RO Unit

Point-Of-Entry (POE)


Treats all water entering a building

Installed POE AA

Safe Drinking Water Act

- List of feasible technologies for small communities – POU and POE
- Owned, operated, and maintained by PWS
- Mechanical warning device
- POU and POE not for microbials
- ANSI certification

SDWA

 (i) In general.— Each national primary drinking water regulation which establishes a maximum contaminant level shall list the technology, treatment techniques, and other means which the Administrator finds to be feasible for purposes of meeting such maximum contaminant level, but a regulation under this subsection shall not require that any specified technology, treatment technique, or other means be used for purposes of

meeting such maximum contaminant

level.

Applicable Regulations

- 40 CFR 141.100 (specific to POE)
 - PWS must own and operate
 - State approved monitoring plan equivalent health protection as central treatment
 - State approved application plan (performance certification, field testing, engineering design) and microbial protection
- 40 CFR 142.62 (POU and POE for variance and exemptions)
- Arsenic Rule SSCTs for arsenic removal (for systems serving 10,000 or fewer):
 - POU Reverse Osmosis
 - POU Activated Alumina

ANSI/NSF Standards

- Standard 44: Cation Exchange Water Softeners
- Standard 53: Drinking Water Treatment Units-Health Effects
 - As (V) <= 50 ppb and <= 300 ppb
 - AS (total) proposed [<= 300 ppb]</p>
- Standard 55: UV Water Treatment Systems
- Standard 58: RO Drinking Water Treatment Systems
 - As (V) <=50 and <= 300 ppb
- Drinking Water Chemicals and Components –
 60 and 61

Installed ANSI/NSF Certified POU Adsorptive Media Unit

Multi-Pure MP880SB

POU/POE Considerations

- Water Quality
- User agreements
 - Local ordinances
 - Lot use agreements (trailer courts,...)
 - Homeowners association
- Access to homes

- AX
 - Competing Ion: sulfate
 - AX not recommended if sulfate ≥ 150 mg/L
 - Susceptible to fouling by iron, magnesium, and copper

- AA
 - Optimal pH for arsenic removal is 5.5 to 6.0
 - pH adjustment typically not feasible for POU AA
 - Competing ions: silica, fluoride, phosphate, sulfate and dissolved iron and manganese
- Iron-based media
 - pH ≤ 8.5
 - Not as sensitive to competing ions

• **RO**

- Cellulose acetate membranes (CAMs) can withstand some chlorine
- Chlorine damages thin-film composite polyamide membranes (TFMs)
 - Chlorine should be ≤ 0.1 mg/L
 - May use a GAC pre-filter to remove chlorine
- Ferric iron, manganese, aluminum
 - < 0.05 mg/L each (can cause fouling)
- Excessive particulate can cause fouling

- For all POU and POE technologies:
 - On-site pilot testing is important.
 - Combinations of contaminants in the water may reduce the effectiveness of a technology, even when basic water quality criteria are met.

Design Considerations

- POU RO
 - CAM (cellulose acetate) vs. TFM (thin film)
 - TFM has higher contaminant removal efficiency, but lower chlorine tolerance

Design Considerations

POU RO

- Water recovery rate
 - POU RO Typically only 25 to 30% of influent volume becomes treated product water
 - Remainder becomes concentrated waste stream
 - May not be suitable in arid regions

Design Considerations

- All POU and POE technologies:
 - Need to consider household demand
 - RO approx. 1 gph
 - Adsorptive media approx. 5 gph
 - May need larger devices for some households
 - May need storage depending on instantaneous production rate of device

Residuals

Solids

 Spent cartridges, media, resin, membranes, bulbs, filters, etc.

Liquids

- Spent backwash
- Spent regenerant
- Waste brine

Residuals Disposal

- Conduct pilot testing to determine quantity and quality of residuals
- POU and POE residuals generated in individual households exempt from Federal regulations as hazardous waste under RCRA
 - However, State regulations and implementation may vary. Contact State on this issue before implementing a POU or POE strategy.

Residuals Disposal

Solids

 Generally can be disposed of in household waste, delivered to a landfill, or regenerated.

Liquids

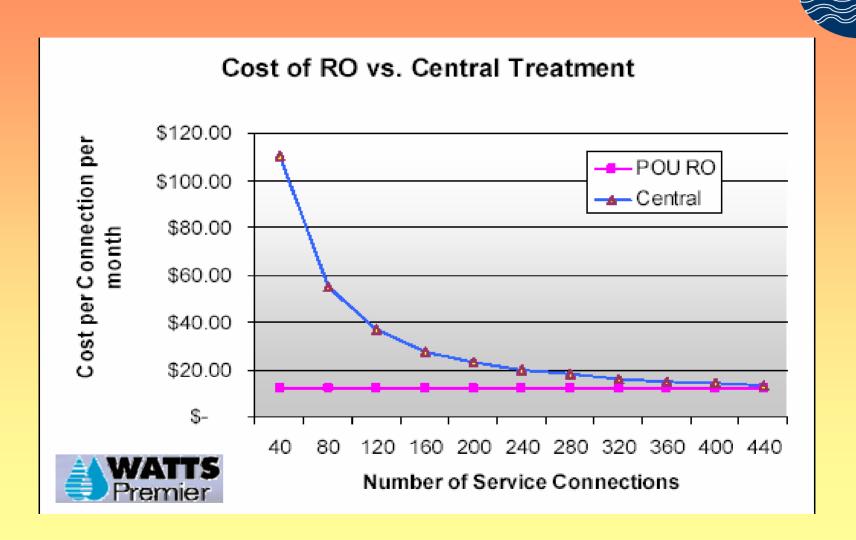
- May usually be discharged to a POTW, onsite septic system, or dry well.
 - POTWs may issue limits for discharge of certain contaminants
- May require special handling and disposal if high concentrations of certain contaminants are present

Residuals Disposal

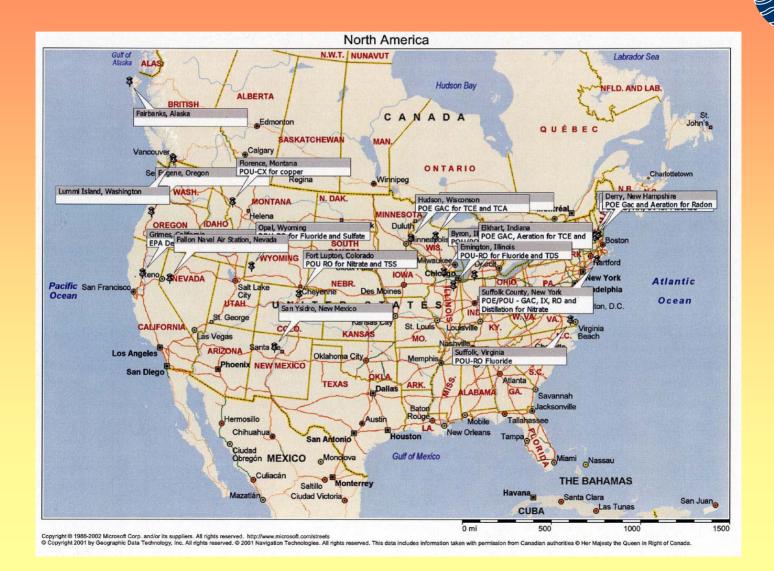
- Commercial establishments
 - May also be exempt from RCRA if
 - Quantity of hazardous waste generated is considered small (defined in 40 CFR 261.5 as no more than 100 kg in that month)
 - Should contact State or local regulatory agency to assess proper classification and disposal

Costs

- Alaska and Oregon Case Study (1983 \$)
 - AX units \$350
 - AA units \$250
 - RO units \$292
- Lummi Island POE-AX (2001 \$)
 - Base unit \$2500 (Average \$3400 \$2500-\$8000)
- NAS Fallon POU-RO (2001 \$)
 - RO units \$300 installed
 - Annual maintenance \$129


AZ Arsenic Master Plan – POU Cost Estimates

- Avg. Household 3 people/house 1gal/day/person
- Installation costs \$150
- Equipment cost RO-\$350 and Adsorption-\$150
- Labor costs \$25installer and \$50 administration
- Cost of analysis -\$12/sample
- Media replacement RO \$95 and Adsorption-\$75

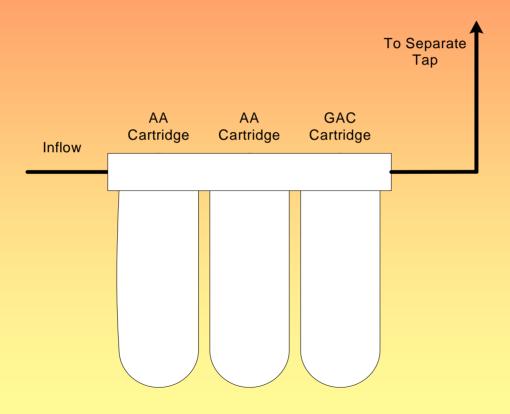


Cost Overview - AZ

Case Studies

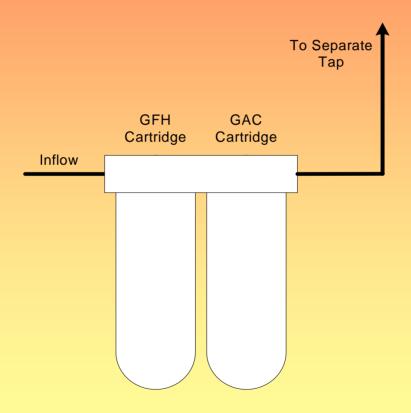
Case Study – Grimes, California

POU Adsorptive Media



Copyright © 1988-2002 Microsoft Corp. and/or its suppliers. All rights reserved. http://www.microsoft.com/streets
© Copyright 2001 by Geographic Data Technology, Inc. All rights reserved. © Her Majesty the Queen in Right of Canada.

Grimes, CA


- NSF/EPA Demonstration Project
 - Supplemental funding from NSF and Kinetico
- System demographics
 - 122 installations (2 RO)
 - 104 residences
 - 18 other sites (e.g., school, post office, businesses, day care, etc.)

Grimes, CA POU AA

Grimes, CA POU GFH

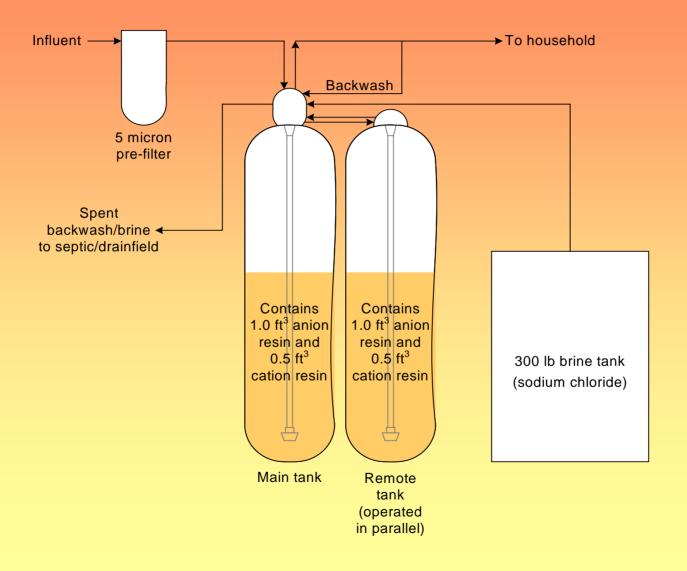
Grimes, CA

Conclusions

- As raw water 20-50 ug/L
 As finished water <10 ug/L (all but 2 samples)
- No replacement within 1 year
- POU units were donated
- Monitoring:
 - Analyzed composite sample from 5 POU devices after installation
 - Samples taken quarterly from then on
- Passed CA WET and TCLP tests

Case Study – Lummi Island, Washington

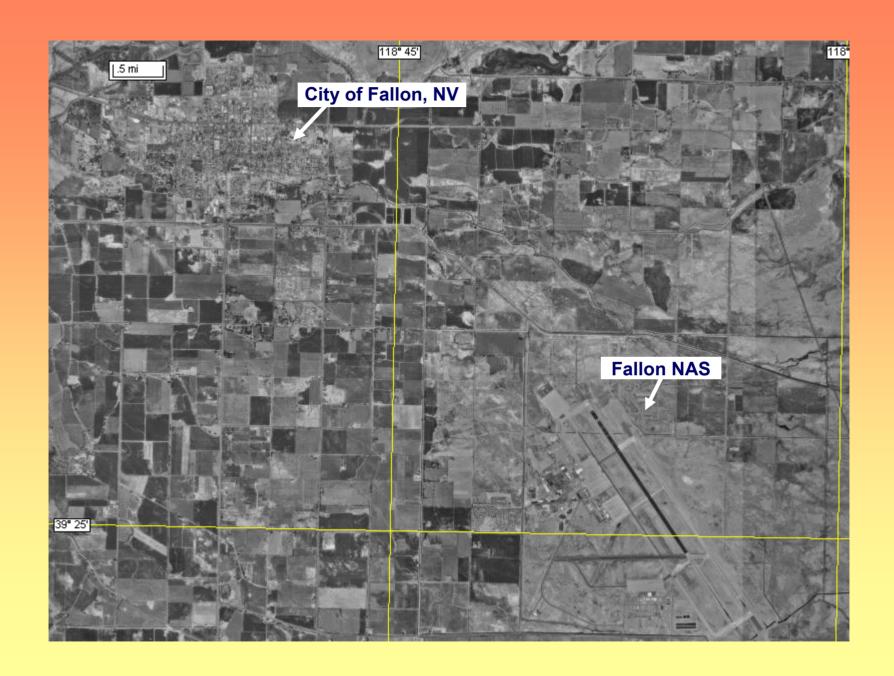
POE Anion Exchange


Lummi Island, WA

- POE for Compliance not a demonstration project
- System Demographics
 - Subdivision with homeowners association
 - Approximately 10 homes
 - Classified as Group B water system (not a PWS)
- Decision
 - Central treatment vs. POE

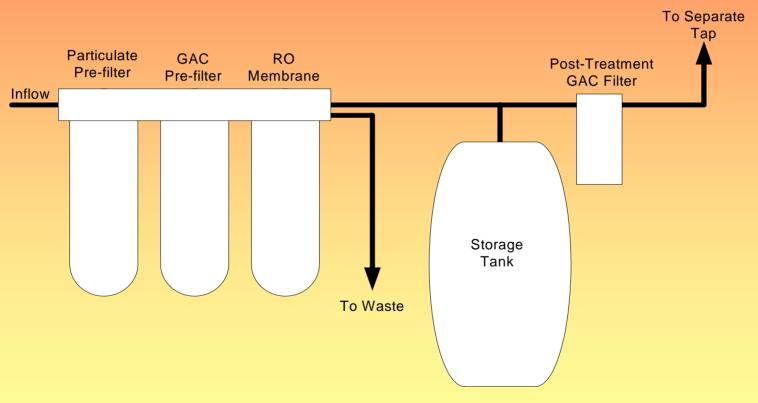
Lummi Island, WA

Lummi Island, WA



- Conclusions
 - Approval process took about 4 years
 - Media expected to last about 5 years
 - Expect to dispose of media in household trash
 - \$2,500 (base) for POE AX
 - Modifications may be necessary to meet new arsenic MCL
 - Homeowners considering switch to ironbased media

Case Study – Fallon, Nevada


POU Reverse Osmosis

- Naval Air Station
 - 360 POU RO units installed in base quarters
 - 75 water cooler style RO machines installed in common areas
 - 11 RO vending machines for on- and off-base residents to fill bottles

- POU RO Costs
 - \$300 per unit for purchase and installation
 - \$129/yr per unit for maintenance and parts replacement
 - \$9 sediment pre-filter cartridge
 - \$12 per GAC filter cartridge
 - \$55 per RO membrane cartridge

- Conclusions
 - As raw water 100 ug/LAs finished water < DL
 - Military base is unique case for POU
 - Military indoctrination process
 - Access to residential POU RO units
 - POU RO installed as temporary measure

RO - POU: School

Provides water to the kitchen and drinking fountains

Summary

- Has application for some public water supplies (small??)
- Has the same water quality considerations as central treatment
- Costs are declining
- Must be well-tested at the system
- Must have state approved operation, maintenance, and monitoring program
- Must provide equivalent public health protection.